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PION PROPERTIES FROM LATTICE QLD
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Using 12* x 24 and 16* x 32 lattices with two flavoers of dynamical Wilson fermion at a variety of
values of F and &, two properties of the pion are investigated. We calcufate £ 2t several values of
péon momentum, 2nd estimate the second moment of the pion’s quark distribution amplitude.

1. INTRODUCTION

in this paper we present the first resolts of 2
project 10 ivestigate hadromic structure based on 3
smulation of full QCD with two degenerate flavours
of Wilson fermionl. So far, we have ressits for the
pron decay constant, [, 2nd for the second

of the quark distribution amplitude in the pioaZ,
-

The 12° and 16* configurations used in this
analysis were generated using the Hybrid Moate
Caro algaiﬂlm?’, and quark propagators wese sub-
sequently calculated on these lattices aftes replicat-
ing once in the time direction. Latiices are analysed
approxirnately every 20 time units with an average
acceptance rate of about 70%. We find that the
ightest value of the pion mass attaized in these sim-
ulations is approximately 600 MeV, and so we expect
the effect of induding dynamical quarks in these siin-
ulations to be small compared to the physical world.

It should be pointed out that the update in the
Hybrid Monte Carlo runs on the 16* lattices initially
had an errorl. Since fixing this bug we have not
noticed any systematic shift in the results. So we
believe that the resultant esror is of the same order as
the statistical errors. The more severe Emitation of
this c2iculation is that we have very few decorrelated
lattices in our statistical sample. Nevertheless, we
consider it worthwhile to analyse this data since this
is an exploratory calculation.

The quark propagators were computed from a
“smeared” source at a fixed time sfice £o. The Wup-
pertal smearing method was used?, in which the
source S(Z) is the solution of the three dimensional
gauge covanant scalar equation,

(~D? + m})S(F) = 6;5.
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Table 1. Resulis for f,.

The tunable pasameter m, may be regaded as 2
“constituent” quark mass. This gauge invariant pro-
cedure gives (for appropriately chosen m,} & lacge
overlap with the wave functions of lonlying hadromic
states so that they dominate the behaviour of corre-
lation functions after only a few time shees. In thes
caladation m, was chosen to give a smearing radius
of = 4 lattice units. We plan to expeniment with
different smearning techniques in the foture.

The parameters for the configurations used in
these measurements are shown in table 1. ¥ is the
number of confignrations in each sample, 1_ is the
time slice at which the pion dominates the =—z cor-
relation function, and m. is given in lattice units.
The final column gives the value of f., discussed in
the next section.

The fitting method used to extract m_ in ta-
ble 1, and used throughout the calculations presented
below, was as follows: we first examined the effec-
tive mass plot to determine the range of fit over
which the pion saturates the 2-point correlator. We
then used a single elimination “jackknife” method
calculating x? for each sample using the correlated
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covariance matrix. In some cases we found that th=
covariance matrix was almost singular and/or the fit
value for the energy was very different from the ef-
fective energy. This bad behavior is due to the small
statistical sample. In these cases we quote results
which minimize the naive x2.

2. THE PION DECAY CONSTANT

The pion decay constant, fx, is a fundamental
parameter of QCD, characterizing the breaking of
chiral symmetry. On the lattice with Wilson fermi-
ons, it is defined by

(014, (0)}=(5)) L

where A, is a lattice transcription of the axial cur-
rent. We will use the local current

Au(z) = P(@)rs1u0(2).

The renormalization constant, Z 4, which relates this
operator to the partially conserved continuum oper-
ator, is not known precisely. In perturbation theory,
Zs = 0.87 at ¢ = 1, but quenched simulations
show this to be inaccurate®. We will assume a value
for Z 4 of around 0.8.

To determine the matrix element (1), we exam-
ine the large time behaviour of the correlators

EJN(6,9) =) ePE(Au(E,8)J(0,0)1,

= Z;lf,,p‘,

CS(,5) = 3 FHIEDIG,01,  (2)

where J(z) = x(z) = P(z)19(z) or J(z) = Aq(x)
are two local interpolating operators for the pion.
The superscripts SL and SS stand for “smeared-
local” and “smeared-smeared”, referring to the fact
that we have smeared the propagators at the source
only (SL), or at both source and sink (SS).

Far from the source, these correlators are domi-
nated by the propagation of the lightest particle hav-
ing an overlap with the interpolating operators, so
that

K6, 5) ~ 2E(~) e Ol R (0 ),
O () ~ SOOI,

where E(p) ~ \/p? + mZE. For periodic boundary

conditions there is a similar contribution from the

D. Daniel et al. / Pion properties from lattice QCD

tuu,uuluuwuuw_
- =54 .
O.4j Oﬁ—5A5 ]
- DB:5.6 =

£ 03 7
~ F _% _
"< 02X T égéé% -
~ o * K .
0.1}— —
O“H:llnfu;!l!ur'ul:

0 02 04 06 08 1

(m,/m,)?

Figure 1. f, at zero momentum.

propagation of the particie backwards around the lat-
tice.

To extract f, from these correlators we use two
methods. In method 1 we fit to the ratio of I\',S,L
and the pion correlator CS3 to cancel the exponen-
tial fall off. The amplitude at the source which we
need to remove is obtained from an independent fit
to CS5. In method 2, we determine the amplitude
and energy from separate single particle fits to the
correlators K‘S‘L and C55. In this way we extract 5
parameters: Agy,, Fsi,, Ass, Ess and R where we as-
sume that the long time behavior of the correlator is
of the form Aexp —Et, and R is the ratio extracted
directly. The final value of f. is given by

1 4 Es;, [2Ass
—fl = g8k, [Z0ss
Za fx Py Esg
1 72 = 24s1, Esy,
Za™" PuV2AssEss’

for the two methods. We find that method 1 gives
more stable results and the best estimate is obtained
using the time component of the axial current and
at zero momentum. The pseudoscalar density is
marginally better as the pion operator. Our best
estimate for Z;lf,r is given in the final column of
table 1.

Figure 1 expresses our results in more physical
terms. We plot Z3! f/m, versus (my/m,)?. Also
shown are the physical points for the pion and kaon
(for which the relevant vector meson is K*(892)),
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and these values rescaled by Z4 = 0.8. As s evident,
there is good agreement between the simulation re-
sults and these rescaled points. Also Z;l falm, is
essentially independent of both the quark mass and
the lattice spacing.

We also measured f, at momenta (0,0,1) and
(0,1,1), using both space and time components of
the axial current. We find these results consistent
with the zerc momentum values, though the errors
are a little larger. This is evidence that for the small
momenta we are considering, Euclidean symmetry
holds to a good approximation. This can be further
investigated by studying the dispersion relation EZ 4
P° = m?. For the pion, this holds well for the the two
momenta we are considering (except at the strongest
coupling). For larger momenta there appear to be
deviations and the errors become very large.

3. THE DISTRIBUTION AMPLITUDE

In the approach of Brodsky and Lepage6 to ex-
clusive hadronic processes at large momentum trans-
fer (high @?), the scattering amplitude is approxi-
mated by the convolution of a perturbatively calcu-
lable hard scattering amplitude with wave functions
describing the overlap of the participating hadrons
with their lowest Fock state. These wave functions
- the quark distribution amplitudes in the hadron
- are hypothesized to contain the non-perturbative
physics.

The distribution amplitude for the pion, ¢, de-
pends on { = z, — z;, where = and z; are the
fractional light-cone momenta carried by the quark
and antiquark respectively, as well as on the renor-
malization scale Q% at which the wave function is
defined. The general features of ¢(£, Q%) can be de-
duced from its moments (£7) = fil deEm¢lE, Q).
# is normalized such that (¢®) = 1, and odd mo-
ments vanish by parity. The moments are related to
the matrix elements of the local operators

0&’341...“,. = in“/;%lo.ﬁDlhDuz .. 'D#yﬂ/’v

through the operator product expansion, giving

(01OG,...snIT(P)) = FrPuoPus -+ Pun (€™ (3)

The operators are understood to be traceless, and
in this study we symmetrize over Lorentz indices,
though eq. (3) holds in any case, as a consequence
of Lorentz covariance. The Q7% dependence of these
matrix elements is calculable within perturbation the-
ory, and consequently the large-Q? form of the wave

function is known, giving (£2) = 0.2. At accessible
energy scales non-perturbative techniques are nec-
essary. We mention previous calculations using two
methods: sum rules and lattice QCD.

Sum rule estimates’ give the surprising result
(€%) =~ 0.4 at Q* = (0.5 GeV)?, indicating a small
amplitude for momentum to be shared evenly be-
tween constituents. Two (quenched) lattice calcula-
tions gave the results {2}, = 0.26 £ 0.138, and
{Ehans = 0.30+0.13%. The subscript indicates that
these are bare lattice numbers. To compare to con-
tinuum measurements we need to include a renor-
malization constant which, at ¢ # 1,Q? = a % =
(2 GeV)2, will probably increase these results by 1.2~
1.4 (though the exact value is not known). Within
errors these lattice calculations agree with the sum
rule estimates, but the errors are very large.

To extract {£2) we study the ratio of two corre-
lators:

KoL) =Y ePH00) (2,6)1(D,0)),

and KU of eq. (2). Because of the absence of Ec-
clidean symmetry we must be careful to choose an
operator, O, which does not mix with fower dimen-
sional operatorss. Satisfactory choices are 0§§’3 -
1/2(0, + 02 and 042, For each of these we
can divide by either K3 or K3¥, and we denote the
four possible ratios by Rf% and R{%. Away from
source, these should be constant in time:

Ri% = p3ps.alé ase
RiZ = pap3 4l ane-

The minimal momenta for which these do not vanish
are (0,0,1) and (0,1, 1) respectively. From our anal-
ysis of f, we believe the granufarity of the lattice is
not a severe problem for these momenta.

A greater problem is having sufficient statistics
to extract a signal. We believe the signal we obtain
is significantly better than in previous lattice studies
(though still poor), and attribute this improvement
to the use of smeared propagators.

Our results for (£2) are given in table 2. In
figure 2 we plot our best results, those for R}%},
versus (m,/m,)?. From this graph it is difficult to
draw any conclusions about the behaviour of (£%)
with the quark mass. Assuming weak dependence
on the quark mass, we average our data to find

{€H)1a0e = 0.10 using Rz?;,
(E%)1ae = 0.11 using RZ?;.
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R§23/P2P4

0.119(13)
0.147(10)
0.122(8)

0.056(23)
0.148(11)
0.127(23)

0.131(21)
0.102(17)

R{™ [paps

0.092(11)
0.098(13)
0.105(19)

0.103(19)
0.123(6)
0.105(15)

0.084(9)
©.100(13)

R3* [pspy

0.103(6)
0.133(6)
0.092(11)

0.062(18)
0.139(19)
0.130(18)

0.138(9)
0.099(16)

Rfm/ P3pP3

0.074(9)
0.085(9)
0.092(4)

0.081(11)
0.109(4)
0.101(15)

0.086(10)
0.097(10)

Table 2. Results for (£2). Rows correspond to the
same parameter values as in table 1.

We do not quote an error, leaving it to the reader to
decide on the reliablility of our results by examining
table 2.

These results are much lower than the previcus
lattice estimates, but the errors quoted in these pa-
pers were very large. More significant is the discrep-
ancy between our result and sum rule caleulations! .
Even allowing for a large error in our result, it would
require a very large renormalization constant andjor
strong quark mass dependence to reconcile the two.

4. SUMMARY AND CONCLUSIONS

Using a variety of lattice parameters, and indud-
ing the effects of two flavours of Wilson fermions,
we have measured f, and the second moment of the
quark distribution amplitude in the pion, (£2). Both
of these measurements require that we extract the
residue of the pion’s contribution to various correla-
tors. The use of “smeared” sources has allowed this
to be done more cleanly than before.

For f we see approximate momentum indepen-
dence for the three momenta considered. The actual
value of f, for all three values of 8 agrees well with
the physical value assuming a lattice renormalization
constant for the axial current of around 0.8.

Our measurements of {£2) suggest that the frac-
tional light-cone momentum of the pion is divided
more evenly between the component quark and an-
tiquark than previous studies, using sum-rules and
quenched lattice QCD, have indicated.
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Figure 2. {£7) from Ri%.
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